Close-packing of equal spheres

Results: 42



#Item
11Crystallography / Spheres / Random close pack / Sphere packing / Packing problem / Close-packing of equal spheres / Ellipsoid / Thermal conductivity / Neil Sloane / Geometry / Discrete geometry / Mathematics

REPORTS Fig. 2. Temperature dependence of the thermal conductivity of the W/Al2O3 nanolaminate deposited at 177°C when ␦ ⫽ 2.9 nm (open circles). Data for a fully dense amorphous Al2O3 film prepared by ion-beam spu

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:00
12Spheres / Quadrics / Surfaces / Sphere packing / Packing problem / Ellipsoid / Close-packing of equal spheres / Random close pack / Oblate spheroid / Geometry / Discrete geometry / Crystallography

VOLUME 92, N UMBER 25 PHYSICA L R EVIEW LET T ERS week ending 25 JUNE 2004

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:00
13Condensed matter physics / Periodic table / Crystal structure / Mineralogy / Density functional theory / Crystal / Close-packing of equal spheres / Electronic band structure / Cubic crystal system / Chemistry / Crystallography / Materials science

PHYSICAL REVIEW B 77, 224103 共2008兲 Zero-temperature generalized phase diagram of the 4d transition metals under pressure C. Cazorla,1,2,3 D. Alfè,1,2,3,4 and M. J. Gillan1,2,3 1London

Add to Reading List

Source URL: www.claudiocazorla.com

Language: English - Date: 2010-02-11 04:55:08
14Geometry / Brillouin zone / Lattice / Phonon / Molecular dynamics / Close-packing of equal spheres / Cubic crystal system / Lennard-Jones potential / Colloidal crystal / Chemistry / Crystallography / Physics

PHYSICAL REVIEW E 74, 021404 共2006兲 Self-assembly of the simple cubic lattice with an isotropic potential Mikael C. Rechtsman,1 Frank H. Stillinger,2 and Salvatore Torquato2,3,4,5,* 1

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:02
15Crystallography / Spheres / Random close pack / Sphere packing / Packing problem / Ellipsoid / Close-packing of equal spheres / Neil Sloane / Geometry / Discrete geometry / Mathematics

Improving the Density of Jammed Disordered Packings using Ellipsoids Aleksandar Donev1,2 , Ibrahim Cisse3,4 , David Sachs3 , Evan A. Variano3,5 , Frank H. Stillinger6 , Robert Connelly7 , Salvatore Torquato1,2,6,∗ , P.

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2004-09-04 17:09:34
16Crystallography / Spheres / Surfaces / Sphere packing / Circle packing / Random close pack / Close-packing of equal spheres / Torus / Sphere / Geometry / Mathematics / Discrete geometry

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and shar

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2008-10-12 12:03:58
17Transition metals / Dietary minerals / Post-transition metals / Cadmium / Metallothionein / Copper / Nickel titanium / Thermodynamic temperature / Close-packing of equal spheres / Chemistry / Matter / Chemical elements

scientific correspondence R Mean relative performance

Add to Reading List

Source URL: understandingaf447.com

Language: English - Date: 2013-07-09 21:34:05
18Crystallography / Spheres / Random close pack / Close-packing of equal spheres / Containerization / Sphere packing / Packing problem / Geometry / Discrete geometry / Mathematics

Packings of circles and spheres Lectures III and IV Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University

Add to Reading List

Source URL: www.math.cornell.edu

Language: English - Date: 2005-07-01 11:52:08
19Spheres / Crystallography / Sphere packing / Packing problem / Close-packing of equal spheres / N-sphere / Geometrical frustration / Kissing number problem / Sphere / Geometry / Discrete geometry / Mathematics

PHYSICAL REVIEW E 74, 041127 共2006兲 Packing hyperspheres in high-dimensional Euclidean spaces Monica Skoge,1 Aleksandar Donev,2,3 Frank H. Stillinger,4 and Salvatore Torquato2,3,4,5,* 1

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:20:03
20Spheres / Crystallography / Lattice points / Quadratic forms / Sphere packing / Packing problem / Random close pack / Close-packing of equal spheres / E8 lattice / Geometry / Mathematics / Discrete geometry

Can Disordered Sphere Packings Ever Be Maximally Dense? Salvatore Torquato Princeton Center for Theoretical Science Department of Chemistry and Materials Institute, Princeton University, Princeton, NJ, USA

Add to Reading List

Source URL: cherrypit.princeton.edu

Language: English - Date: 2008-12-08 18:22:45
UPDATE